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1 Polynomial Brownian Motion Martingales and Arcsine Laws

1.1 Polynomial Brownian motion martingales

What kind of function of Brownian motion is a martingale? We want E[f(t, Bt) | Fs] =
f(s,Bs) for all t > s. We can also state this as E[f(t, B(t))− f(s,B(s)) | Fs].

Proposition 1.1. If f is a polynomial, and

∂f

∂t
+

1

2
fxx = 0,

then f(t, Bt) is a martingale.

Remark 1.1. This is not the heat equation, but it is similar. The heat equation looks like
∂f
∂t −

1
2fxx = 0. If we let pt(x, y) = fBt|{B0=x}(y), then pt(0, x) satisfies the heat equation.

Remark 1.2. For high-dimensional Brownian motion, the formula should be

∂f

∂t
+

1

2
∆f = 0.

How do we think of pt(x, y). Certainly,
∫
pt(0, y) dy = 1. Here is how physicists think

about it. If we have 1 pound of sand at t = 0, we can move the sand around randomly
according to Brownian motion. Then at time t = t0, pt0(0, x) is the density of sand at
x. The fact that pt(x, y) satisfies the heat equation explains why the variance of pt(0, y)
spreads out as t grows (the probability spreads out like heat).

If f is a martingale, we get E[f(t, Bt)−f(0, B0)] = 0. What does this mean in physics?
This is like ∫

sand
f(t, Bt) = f(0, B0).

Let fn = f(t,position of sand particle n). Then

lim
N→∞

1

N

N∑
n=1

fn(t) = f(0) = f(0, B0).

1



What fs satisfy this condition? If f is constant or linear with respect to position, this
condition holds. If you want a 2nd derivative condition, then you need ∂f

dt + ∆f = 0.

Proof. We have E[f(t, Bt)− f(0, B0)] = 0. This is∫
f(t, y)pt(x, y) dy − f(0, x) = 0.

If we take the derivative with respect to t, we get∫
f1(t, y)pt(x, y) dt +

∫
f(t, y)

∂pt
∂t

(x, y) = 0.

By integration by parts, we get ∫
(f1 +

1

2
f2,2)pt(x, y) = 0.

So f1 + 1
2f2,2 = 0.

Remark 1.3. It is not necessary for f to be a polynomial. f = eθBt− 1
2
θ2t is also a

martingale.

1.2 Arcsine laws and time of the maximum in Brownian motion

Let T be the first time such that BT = supt∈[0,1]Bt. Last time, we learned that the last
zero of Brownian motion in [0, 1] is distributed like arcsine. There are two other Brownian
motion arcsine laws:

1. |{t : B(t) > 0, t ∈ [0, 1]}|,

2. T as defined above.

The way to calculate T is to first find the joint density of (T,M), where M = supt∈[0,1]Bt.

Let M(t) = sups∈[0,t]Bs, and let Xt = B(t)−M(t) ≤ 0. We can also consider Yt = −|B̃(t)|,
which is a different Brownian motion. We claim that Xt

d
= Yt. Here is a heuristic argument

1. First, we have |{t : B(t) = M(t))}| = 0.

2. Next, if B(t0) 6= M(t0), then there are an interval I and t0 ∈ I such that B(t)−M(t)
looks like a Brownian motion in I.

3. Now T for B(t) is the last zero for B̃(t). This is because the last zero of B̃(t) and the
last zero of Yt have the same distribution. And Yt and Xt have the same distribution.
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The idea to prove this is to use a random walk. If we take a limit of scaled random
walks, we will eventually get Brownian motion. We will go over this next time, in a result
called Donsker’s theorem.

If Sn is the result of a simple random walk on Z at time n, then let Xn = Sn −Mn. If
Xn−1 6= 0, then Xn = Xn−1 ± 1 with probability 1/2 each. If Xn−1 = 0,

Xn =

{
−1 with probability 1/2,

0 with probability 1/2.

Then Yn = −|S̃n| has the same distribution as Xn. This result will extend to Brownian
motion.
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